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Abstract We study the perfect Bose gas in random external potentials and show that there
is generalized Bose-Einstein condensation in the random eigenstates if and only if the same
occurs in the one-particle kinetic-energy eigenstates, which corresponds to the generalized
condensation of the free Bose gas. Moreover, we prove that the amounts of both condensate
densities are equal. Our method is based on the derivation of an explicit formula for the oc-
cupation measure in the one-body kinetic-energy eigenstates which describes the repartition
of particles among these non-random states. This technique can be adapted to re-examine
the properties of the perfect Bose gas in the presence of weak (scaled) non-random poten-
tials, for which we establish similar results. In addition some of our results can be applied
to models with diagonal interactions, that is, models which conserve the occupation density
in each single particle eigenstate.

Keywords Generalized Bose-Einstein condensation · Random potentials · Integrated
density of states · Lifshitz tails · Diagonal particle interactions

1 Introduction

The study of Bose-Einstein Condensation (BEC) in random media has been an important
area for a long time, starting with the papers by Kac and Luttinger, see [1, 2], and then by
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Luttinger and Sy [3]. In the last reference, the authors studied a non-interacting (perfect) one
dimensional system with point impurities distributed according to the Poisson law, the so-
called Luttinger-Sy model. The authors conjectured a macroscopic occupation of the random
ground state, but this was not rigorously proved until [5]. Although the free Bose gas (i.e.,
the perfect gas without external potential) does not exhibit BEC for dimension less than
three, the randomness can enhance BEC even in one dimension, see e.g. [4]. This striking
phenomenon is a consequence of the exponential decay of the one particle density of states
at the bottom of the spectrum, known as Lifshitz tail , or “doublelogarithmic” asymptotics,
which is generally believed to be associated with the existence of localized eigenstates [16].

BEC, however, is usually associated with a macroscopic occupation of the lowest one-
particle kinetic-energy eigenstates, which are spatially extended (plane waves). Therefore,
it is not immediately clear whether the phenomenon discovered in random boson gases, i.e.
macroscopic occupations of localized one-particle states, has any relation to the standard
BEC. This is of particular interest in view of the applications of the well-known Bogoli-
ubov c-number approximation [6] to disordered boson systems, see e.g. [12, 13] where the
creation/annihilation operators for the kinetic energy ground state are replaced by complex
numbers. Although it has been known since the work of Ginibre [7] that this procedure gives
the correct pressure in the thermodynamic limit and moreover, it does not require translation
invariance, see [8], the associated variational equation (Condensate Equation) [9], has a triv-
ial solution unless there is generalized condensate in the lower momentum states. Since such
a condensate is not to be expected a priori in random systems, it is therefore interesting to
investigate if such type of BEC occurs in some random simple models. One should note that
even for translation invariant models, the relation between the solution of the condensate
equation and the occupation of the kinetic energy ground state is not straightforward [10].

In this paper, we prove that for the perfect Bose gas in a general class of non-negative
random potentials, BEC in the random localized one-particle states and BEC in the lowest
one-particle kinetic-energy states occur simultaneously, and moreover the density of the
condensate fractions are equal. Our line of reasoning is also applicable to some non-random
systems, for example to the case of the perfect gas in weak (scaled) external potentials
studied in [24]. We note that our proof for the fact that BEC in the random localized one-
particle states implies BEC in the lowest one-particle kinetic-energy states holds without
modification for a certain class of boson gases with diagonal interactions (i.e. invariant with
respect to the “local” gauge transformations), while the implication in the other direction
requires some additional arguments which will be given in a later work.

The structure of the paper is as follows: in Sect. 2 we describe our disordered system, and
in Sect. 3, we recall standard results about the corresponding perfect Bose gas. The existence
of generalized BEC in the eigenstates of the one-particle Schrödinger operator follows from
the finite value of the critical density for any dimension, which is a consequence of the
Lifshitz tail in the limiting Integrated Density of States (IDS). It is well-known that the IDS
is a non-random quantity, see e.g. [16], and therefore the BEC density is also non-random
in the thermodynamic limit. In Sect. 4, we turn to the main result of this paper: we show that
this phenomenon occurs if and only if there is also occupation of the lowest one-particle
kinetic-energy eigenstates. The latter corresponds to the usual generalized BEC in the free
Bose gas, that is a perfect gas without external potential. To establish this we prove the
existence of a non-random limiting occupation measure for kinetic energy eigenstates, and
moreover, we obtain an explicit expression for it. To this end, we need some estimates for
the IDS before the thermodynamic limit, namely a finite volume version of the Lifshitz tail
estimates, which we prove in Sect. 5, using techniques developed in [14, 15]. For any finite
but large enough system, these bounds hold almost surely with respect to random potential
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realizations. In Sect. 6, we look at the particular case of the Luttinger-Sy model and examine
the nature of the condensate in the one-particle kinetic energy eigenstates, showing that
although there is generalized BEC, no condensation occurs in any of them. In Sect. 7, we
describe briefly how the method developed in Sect. 4 applies with minor modifications to
a perfect Bose gas in a general class of weak (scaled), non-random external potentials. To
make the paper more accessible and easy to read, we postpone some technical estimates
concerning random potentials and Brownian motion to Appendices A and B, respectively.

2 Model, Notations and Definitions

Let {�l := (−l/2, l/2)d}l≥1 be a sequence of hypercubes of side l in R
d , d ≥ 1, centered at

the origin of coordinates with volumes Vl = ld . We consider a system of identical bosons,
of mass m, contained in �l . For simplicity, we use a system of units such that � = m = 1.
First we define the self-adjoint one-particle kinetic-energy operator of our system by:

h0
l := −1

2
�D, (2.1)

acting in the Hilbert space Hl := L2(�l). The subscript D stands for Dirichlet boundary
conditions. We denote by {ψl

k, ε
l
k}k≥1 the set of normalized eigenfunctions and eigenvalues

corresponding to h0
l . By convention, we order the eigenvalues (counting the multiplicity) as

εl
1 ≤ εl

2 ≤ εl
3 ≤ · · · .

We define an external random potential v(·)(·) : � × R
d → R, x �→ vω(x) as a random

field on a probability space (�, F ,P), satisfying the following conditions:

(i) vω,ω ∈ �, is non-negative;
(ii) p := P{ω : vω(0) = 0} < 1.

As usual, we assume that this field is regular, homogeneous and ergodic. These techni-
cal conditions are made more explicit in Appendix B. Then the corresponding random
Schrödinger operator acting in H := L2(Rd) is a perturbation of the kinetic-energy op-
erator:

hω := −1

2
� � vω, (2.2)

defined as a sum in the quadratic-forms sense. The restriction to the box �l , is specified
by the Dirichlet boundary conditions and for regular potentials one gets the self-adjoint
operator:

hω
l :=

(
−1

2
� + vω

)
D

= h0
l � vω, (2.3)

acting in Hl . We denote by {φω,l
i ,E

ω,l
i }i≥1 the set of normalized eigenfunctions and cor-

responding eigenvalues of hl . Again, we order the eigenvalues (counting the multiplicity)
so that E

ω,l
1 ≤ E

ω,l
2 ≤ E

ω,l
3 · · · . Note that the non-negativity of the random potential implies

that E
ω,l
1 > 0. So, for convenience we assume also that in the thermodynamic limit almost

surely (a.s.) with respect to the probability P, the lowest edge of this random one-particle
spectrum is:

(iii) a.s.-liml→∞ E
ω,l
1 = 0.
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When no confusion arises, we shall omit the explicit mention of l and ω dependence.
Note that the non-negativity of the potential implies that:

(a) Q(hω
l ) ⊂ Q(h0

l ), Q being the quadratic form domain,

(b) (ϕ,hω
l ϕ) ≥ (ϕ,h0

l ϕ), ∀ϕ ∈ Q(hω
l ).

(2.4)

Now, we turn to the many-body problem. Let Fl := Fl (Hl ) be the symmetric Fock
space constructed over Hl . Then Hl := d
(hω

l ) denotes the second quantization of the one-
particle Schrödinger operator hω

l in Fl . Note that the operator Hl acting in Fl has the
form:

Hl =
∑
j≥1

E
ω,l
j a∗(φj )a(φj ), (2.5)

where a∗(φi), a(φi) are the creation and annihilation operators (satisfying the boson Canon-
ical Commutation Relations) in the one-particle eigenstates {φi := φ

ω,l
i }i≥1 of hω

l . Then, the
grand-canonical Hamiltonian of the perfect Bose gas in a random external potential is given
by:

Hl(μ) := Hl − μNl =
∑
i≥1

(E
ω,l
i − μ)Nl(φi), (2.6)

where Nl(φi) := a∗(φi)a(φi) is the operator for the number of particles in the eigenstate φi ,
Nl := ∑

j Nl(φj ) is the operator for the total number of particles in �l and μ is the chemical
potential. Note that Nl can be expanded over any basis in the space Hl , and in particular
over the one defined by the free one-particle kinetic-energy eigenstates {ψl

k, εk}k .
Although this paper is mainly devoted to the perfect Bose gas, some of our results can

be extended to a class of models with “diagonal interaction” in addition to the random
potential. By this we mean models with Hamiltonian HU

l (μ) := Hl(μ) + Ul , where Ul is a
many-body interaction, satisfying the “local” gauge invariance:

[HU
l (μ),Nl(φj )] = 0 (2.7)

for any j ≥ 1, or equivalently:

eiγj Nl (φj )HU
l (μ)e−iγj Nl (φj ) = HU

l (μ), γj ∈ R
1, j ≥ 1. (2.8)

The latter means that Ul is a function of the occupation number operators {Nl(φj )}j≥1, and
for this reason it is called a “diagonal interaction”. We shall assume that Ul is bounded
from below. A well-known example is the mean-field interaction Ul := λN2

l /2Vl , λ ≥ 0.
[19, 20]. Our results for the general diagonal interaction are weaker than for the mean-field
interaction, see Remarks 4.1 and 4.2.

Note that in the free Bose gas, with periodic boundary conditions the “local” gauge in-
variance (2.7) gives the same selection rule as the momentum conservation law which en-
sures that the number of particles in each momentum state is conserved. In the random
model there is no such momentum selection rule but in our model it is the particle number
in each random eigenstate φi that is conserved.

We denote by 〈−〉HU
l

the equilibrium quantum Gibbs state defined by the Hamiltonian

HU
l (μ):

〈A〉HU
l

(β,μ) := TrFl
{exp(−βHU

l (μ))A}
TrFl

exp(−βHU
l (μ))

,
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and we put 〈−〉l := 〈−〉HU=0
l

. For simplicity, we shall omit in the following the explicit
mention of the dependence on the thermodynamic parameters (β,μ). Finally, we define the
Thermodynamic Limit (TL) as the limit, when l → ∞.

3 Generalized BEC in One-Particle Random Eigenstates

In this section we consider the possibility of macroscopic occupation of the one-particle ran-
dom Schrödinger operator (2.3) eigenstates {φi}i≥1. Recall that the corresponding limiting
IDS, ν(E), is defined as:

ν(E) := lim
l→∞

νω
l (E) = lim

l→∞
1

Vl

�{i : Eω,l
i ≤ E}. (3.1)

Although the finite-volume IDS, νω
l (E), are random measures, one can check that for ho-

mogeneous ergodic random potentials the limit (3.1) has the property of self-averaging [16].
This means that ν(E) is almost surely (a.s.) a non-random measure. Let us define a (random)
particle density occupation measures ml by:

ml(A) := 1

Vl

∑
i:Ei∈A

〈Nl(φi)〉l , A ⊂ R. (3.2)

Then using standard methods, one can prove that this sequence of measures has (a.s.) a
non-random weak-limit m, see (3.8) below. Moreover, if the critical density

ρc := lim
μ→0

∫ ∞

0

1

eβ(E−μ) − 1
ν(dE) (3.3)

is finite, then one obtains a generalized Bose-Einstein condensation (g-BEC) in the sense
that this measure m has an atom at the bottom of the spectrum of the random Schrödinger
operator, which by (iii), Sect. 2, is assumed to be at 0:

m({0}) = lim
δ↓0

lim
l→∞

∑
i:Ei≤δ

1

Vl

〈Nl(φi)〉l =
{

0 if ρ < ρc,

ρ − ρc if ρ ≥ ρc,
(3.4)

where ρ denotes a (fixed) mean density [4, 5]. Physically, this corresponds to the macro-
scopic occupation of the set of eigenstates φi with energy close to the ground state φ1.
However, we have to stress that BEC in this sense does not necessarily imply a macroscopic
occupation of the ground state. In fact, the condensate can be spread over many (and even
infinitely many) states.

These various situations correspond to classification of the g-BEC on the types I, II
and III, introduced in the eighties by van den Berg-Lewis-Pulé, see e.g. [17] or [6, 18].
The most striking case is type III when generalized BEC occurs in the sense of (3.4) even
though none of the eigenstates φi are macroscopically occupied. The realization of differ-
ent types depends on how the relative gaps between the eigenvalues Ei at the bottom of the
spectrum vanishes in the TL. To our knowledge, analysis of this behaviour in random system
has only been realised in some particular cases, see [5] for a comprehensive presentation.
The concept of generalized BEC is more stable then the standard one-mode BEC, since it
depends on the global low-energy behaviour of the density of states, especially on its ability



24 T. Jaeck et al.

to make the critical density (3.3) finite. We note also that, since the IDS (3.1) is not random,
the same it true for the amount of the g-BEC (3.4).

We can also obtain an explicit expression for the limiting measure m. Note that we have
fixed the mean density ρ, which implies that we require the chemical potential μ to satisfy
the equation:

ρ = 1

Vl

〈Nl〉l (β,μ) = 1

Vl

∑
i≥1

1

eβ(E
ω,l
i

−μ) − 1
, (3.5)

for any l. Since the system is disordered, the unique solution μω
l := μω

l (β,ρ) of this equation
is a random variable, which is a.s. non-random in the TL [4, 5]. In the rest of this paper we
denote the non-random μ∞ := a.s.- liml→∞ μω

l . By condition (iii), Sect. 2, and by (3.7) it is
a continuous function of ρ:

μ∞(β,ρ) =
{

0 if ρ ≥ ρc,

μ < 0 if ρ < ρc,
(3.6)

where μ := μ(β,ρ) is a (unique) solution of the equation:

ρ =
∫ ∞

0

1

eβ(E−μ) − 1
ν(dE), (3.7)

for ρ ≤ ρc .

Remark 3.1 Note that μ∞ is non-positive (3.6), which is not true in general for the random
finite-volume solution μω

l . Indeed, the only restriction we have is that μω
l < E

ω,l
1 , which

is the well-known condition for the pressure of the perfect Bose gas to exist. We return to
this question in Sect. 4 when we study BEC in the free one-particle kinetic-energy operator
eigenfunctions in the presence of a random potential.

We also recall that for (3.6) the explicit expression of the weak limit for the general
particle density occupation measure is:

m(dE) =
{

(ρ − ρc)δ0(dE) + (eβE − 1)−1ν(dE) if ρ ≥ ρc,

(eβ(E−μ∞) − 1)−1ν(dE) if ρ < ρc.
(3.8)

We end this section with a comment about the difference between the model of the perfect
Bose gas embedded into a random potential and the free Bose gas. In the latter case, one
should consider the IDS of the one-particle kinetic-energy operator (2.1), which is given by
the Weyl formula:

ν0(E) = CdE
d/2, (3.9)

where is Cd is a constant term depending only on the dimensionality d . It is known that for
this IDS, the critical density (3.3) is finite only when d > 2, and hence the fact that BEC
does not occur for low dimensions. On the other hand, a common feature of Schrödinger
operators with regular, stationary, non-negative ergodic random potentials is the so-called
Lifshitz tails behaviour of the IDS near the bottom of the spectrum. When the lower edge of
the spectrum coincides with E = 0 (condition (iii)), this means roughly that (see for example
[16]):

ν(E) ∼ e−a/Ed/2
(3.10)
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for small E and a > 0. Hence, the critical density (3.3) is finite in any dimension, and there-
fore enhances BEC in the sense of (3.4) even for d = 1,2. This was shown in [4, 5], where
some specific examples of one-dimensional Poisson disordered systems exhibiting g-BEC
in the sense of (3.4) were studied. In this article we require only the following rigorous upper
estimate:

lim
E→0+(−Ed/2) ln(ν(E)) ≥ a > 0, (3.11)

for some constant a. This can be proved (see [14]) under the technical conditions detailed
in Appendix B, which are assumed throughout this paper. In particular these conditions are
satisfied in the case of Poisson random potentials with sufficiently fast decay of the potential
around each impurity.

4 Generalized BEC in One-Particle Kinetic Energy Eigenstates

4.1 Occupation Measure for One-Particle Kinetic Energy Eigenstates

Similar to (3.2), we introduce the sequence of particle occupation measure m̃l for kinetic
energy eigenfunctions {ψk := ψl

k}k∈�∗
l
:

m̃l(A) := 1

Vl

∑
k:εk∈A

〈Nl(ψk)〉l , A ⊂ R, (4.1)

but now in the random equilibrium states 〈−〉l corresponding to the perfect boson gas with
Hamiltonian (2.5).

Note that, contrary to the last section, the standard arguments used to prove the existence
of a limiting measure in TL are not valid for (4.1), since the kinetic energy operator (2.1)
and the random Schrödinger operator (2.3) do not commute.

We remark also that even if we know that the measure m (3.8) has an atom at the edge
of the spectrum (g-BEC), we cannot deduce that the limiting measure m̃ (assuming that it
exists) also manifests g-BEC in the free kinetic energy eigenstates ψk .

Now we formulate the main result of this section.

Theorem 4.1 The sequence of measures m̃l converges a.s. in a weak sense to a non-random
measure m̃, which is given by:

m̃(dε) =
{

(ρ − ρc)δ0(dε) + F(ε)dε if ρ ≥ ρc,

F (ε)dε if ρ < ρc

with density F(ε) defined by:

F(ε) = (2ε)d/2−1
∫

S1
d

dσg(
√

2εnσ ).

Here, S1
d denotes the unit sphere in R

d centered at the origin, nσ the unit outward drawn
normal vector, and dσ the surface measure of S1

d . The function g is defined as follows

g(k) := 1

(2π)d/2

∫
Rd

dxeikx
∑
n≥1

enβμ∞Eω

(
Knβ

ω (x,0)
)

(4.2)
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where Eω is the expectation on the probability space (�, F ,P) and Kt
ω(x, x ′) is the kernel

of the operator e−thω
.

Note that since the measures wnβ on �
nβ

(0,x) are normalized, we recover from (4.2) the
expression for the free Bose gas if we put vω = 0.

Before proceeding with the proof, we give some comments about these results.

(a) First, the existence of a non-trivial limiting kinetic energy states occupation measure
provides a rigorous basis for discussing the macroscopic occupation of the free Bose
gas eigenstates.

(b) Moreover, both occupation measures (3.8) and (4.1) do not only exhibit simultaneously
an atom at the bottom of the spectrum, but these atoms have the same non-random
weights. It is quite surprising that the generalized BEC triggered by the Lifshitz tail in
a low dimension disordered system produces the same value of the generalized BEC in
the lowest one-particle kinetic-energy states.

(c) In addition our proofs have the following consequence for models with diagonal interac-
tion Ul . The occurrence of generalized BEC in random one-particle states implies there
is generalized BEC in the extended, i.e., kinetic-energy eigenstates and the density of
the former cannot exceed the density of the latter. Our proof also shows that in spite of
the lack of translation invariance in the random system, condensation always occurs in
the lower kinetic energy states provided we can prove monotonicity of the finite-volume
mean occupation numbers, 〈Nl(φj )〉HU

l
as a function of j ≥ 1, which can be done for

the mean-field case.

4.2 Proofs

We start by expanding the measure m̃ in terms of the random equilibrium mean-values of
occupation numbers in the corresponding eigenstates φi . Using the linearity (respectively
conjugate linearity) of the creation and annihilation operators one obtains:

m̃l(A) = 1

Vl

∑
k:εk∈A

〈a∗(ψk)a(ψk)〉l

= 1

Vl

∑
i,j

∑
k:εk∈A

(φi,ψk)(φj ,ψk)〈a∗(φi)a(φj )〉l

= 1

Vl

∑
i

∑
k:εk∈A

|(φi,ψk)|2〈a∗(φi)a(φi)〉l . (4.3)

In the last equality, we have used the “local” gauge invariance (2.7) which implies that:

〈a∗(φi)a(φj )〉l = 0 if i �= j.

We first prove two important lemmas.
The first result states that if there is condensation in the lowest random eigenstates {φi}i ,

then there is also condensation in the lowest kinetic-energy states {ψk}k . Moreover, the
amount of the latter condensate density has to be not less than the former.
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Lemma 4.1 Let {m̃lr }r≥1 be a convergent subsequence. We denote by m̃ its (weak) limit.
Then:

m̃({0}) ≥ m({0}) =
{

ρ − ρc if ρ ≥ ρc,

0 if ρ < ρc.

Proof Let γ > 0. Using the expansion of the functions ψk in the basis {φi}i≥1, we obtain:

m̃([0, γ ]) = lim
r→∞

1

Vlr

∑
k:εk≤γ

〈Nlr (ψk)〉lr

= lim
r→∞

1

Vlr

∑
k:εk≤γ

∑
i≥1

|(φi,ψk)|2〈Nlr (φi)〉lr

≥ lim
r→∞

1

Vlr

∑
k:εk≤γ

∑
i:Ei≤δ

|(φi,ψk)|2〈Nlr (φi)〉lr

for any δ > 0. The non-negativity of the random potential (2.4) implies:

∑
k:εk>γ

|(φi,ψk)|2 ≤
∑

k:εk>γ

εk

γ
|(φi,ψk)|2 ≤ 1

γ

∑
k≥1

εk|(φi,ψk)|2 = 1

γ
(φi, h

0
l φi)

≤ 1

γ
(φi, h

ω
l φi) = Eω

i

γ
.

We then obtain:

m̃([0, γ ]) ≥ lim
r→∞

1

Vlr

∑
i:Ei≤δ

〈Nlr (φi)〉lr
(

1 −
∑

k:εk>γ

|(φi,ψk)|2
)

≥ lim
r→∞

1

Vlr

∑
i:Ei≤δ

〈Nlr (φi)〉lr (1 − Ei/γ )

≥ lim
r→∞(1 − δ/γ )

1

Vlr

∑
i:Ei≤δ

〈Nlr (φi)〉lr = (1 − δ/γ )m([0, δ])≥ 0.

But δ is arbitrary, and the lemma follows by letting δ → 0. �

Remark 4.1 (Diagonal Interaction) The proof of Lemma 4.1 can be readily extended to a
version which does not require the sequence of measures m̃l to converge. This is valid for
models with Hamiltonian HU

l , which satisfy the invariance condition (2.7) and for which
the random potential is non-negative. The equivalent statement is then:

Suppose that the sequence ml converges to m, then

lim
δ→0

lim inf
l→∞

m̃l([0, δ]) ≥ m({0}).

In the next lemma, we show that for the perfect gas the kinetic states occupation measure
(4.1) can have an atom in the thermodynamic limit only at zero kinetic energy. We shall not
assume that the sequence m̃l has a weak limit, instead we consider only some convergent
subsequence. Note that at least one such subsequence always exists, see [21], Chap. VIII.6.
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Lemma 4.2 Let {m̃lr }r≥1 be a convergent subsequence, and m̃ be its (weak) limit. Then, it
is absolutely continuous on R+ := (0,∞).

Proof Let A to be a Borel subset of (0,∞), with Lebesgue measure 0, and let a be such that
infA > a > 0. Then:

m̃lr (A) = 1

Vlr

∑
k:εk∈A

〈Nlr (ψk)〉lr

= 1

Vlr

∑
k:εk∈A

∑
i

|(φi,ψk)|2〈Nlr (φi)〉lr

= 1

Vlr

∑
k:εk∈A

∑
i:Ei≤α

|(φi,ψk)|2〈Nlr (φi)〉lr

+ 1

Vlr

∑
k:εk∈A

∑
i:Ei>α

|(φi,ψk)|2〈Nlr (φi)〉lr (4.4)

for some α > 0. Next, we use (2.4) to get the following estimate:

Eω
i = (φi, h

ω
l φi) ≥ (φi, h

0
l φi) =

∑
k

εk|(φi,ψk)|2 ≥ a
∑

k:εk∈A

|(φi,ψk)|2.

Since the equilibrium value of the occupation numbers 〈Nl(φi)〉l = {eEω
i

−μ − 1}−1 are de-
creasing with i, the estimate (4.4) implies:

m̃lr (A) ≤ 1

Vlr

1

a

∑
i:Ei≤α

Eω
i 〈Nlr (φi)〉lr + 〈Nlr (φiα )〉lr

1

Vlr

∑
k:εk∈A

1, (4.5)

where φiα denotes the eigenstate of hω
l with the smallest eigenvalue greater than α. Using

again the monotonicity and the finite-volume IDS (3.1) we can get an upper bound for the
mean occupation number in the second term of (4.5), since:

ρ = 1

Vl

∑
i

〈Nl(φi)〉l ≥ 1

Vl

∑
i:Ei≤α

〈Nl(φi)〉l ≥ 〈Nl(φiα )〉lνω
l (α). (4.6)

Combining (4.5) and (4.6) we obtain:

m̃lr (A) ≤ αρ

a
+ ρ

νω
lr
(α)

∫
A

ν0
lr
(dε). (4.7)

Since the measure ν0 (3.9) is absolutely continuous with respect to the Lebesgue measure,
and ν(α) is strictly positive for any α > 0 the limit r → ∞ in (4.7) gives:

m̃(A) ≤ αρ

a
,

but α > 0 can be chosen arbitrary small and thus m̃(A) = 0. To finish the proof, note that
any Borel subset of (0,∞) can be expressed as a countable union of disjoint subsets with
non-zero infimum. Our arguments than can be applied to each of them. �
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Remark 4.2 (Diagonal Interaction) Lemma 4.2 can also be extended in the same way as
proposed in Remark 4.1, for Lemma 4.1. Again we assume the invariance condition (2.7)
for interacting bosons with Hamiltonian HU

l and the non-negativity of the random potential,
with the additional requirement that the occupation numbers 〈Nl(φi)〉HU

l
are monotonic in i.

This last property is valid for the Bose-gas with a mean-field interaction, see [11].

Above we exploited the fact that the sequence {m̃l}l≥1 has at least one accumulation
point. However, to prove convergence, we need to make use of some particular and explicit
features of the perfect Bose gas, as well as more detailed information about the properties of
the external (random) potential. In particular, we shall need some estimates of the (random)
finite volume integrated density of states, see Lemma 5.1.

To this end let us denote by PA the orthogonal projection onto the subspace spanned by
the one-particle kinetic energy states ψk with kinetic energy ε(k) in the set A. Then using
the explicit expression for the mean occupation 〈a∗(φi)a(φi)〉l and (4.3) we obtain:

m̃l(A) = 1

Vl

TrPA(eβ(hω
l
−μl) − 1)−1 =

∑
n≥1

1

Vl

TrPA(e−nβ(hω
l
−μl)). (4.8)

Now we split the measure (4.8) into two parts:

m̃l = m̃
(1)
l + m̃

(2)
l ,

m̃
(1)
l (A) :=

∑
n≥1

1

Vl

TrPA(e−nβ(hω
l
−μl))1(μl ≤ 1/n),

m̃
(2)
l (A) :=

∑
n≥1

1

Vl

TrPA(e−nβ(hω
l
−μl))1(μl > 1/n). (4.9)

Note that since the chemical potential satisfies (3.5), μl := μω
l , the indicator functions

1(μl ≤ 1/n) and 1(μl > 1/n) split the range of n into the sums (4.9) in a random and
volume-dependent way.

We start with the proof of existence of a weak limit of the sequence of random mea-
sures m̃

(1)
l :

Theorem 4.2 Let random potential vω satisfy the assumptions (i)–(iii) of Sect. 2. Then for
any d ≥ 1, the sequence of Laplace transforms of the measures m̃

(1)
l :

fl(t;β,μl) :=
∫

R

m̃
(1)
l (dε) e−tε (4.10)

converges for any t > 0 to a (non-random) limit f (t;β,μ∞), which is given by:

f (t;β,μ∞) =
∑
n≥1

enβμ∞
∫

Rd

dx
e−‖x‖2/2t

(4π2t)d/2
Eω

(
Knβ

ω (x,0)
)
. (4.11)

Here Eω denotes the expectation with respect to realizations (configurations) ω of the ran-
dom potential. Note that the sum on the right-hand side converges for all (non-random)
μ∞ ≤ 0, including 0, which corresponds to the case ρ ≥ ρc.
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Proof By definition of PA the Laplace transformation (4.10) can be written as:

fl(t;β,μl) =
∑
n≥1

1

Vl

Tr e−th0
l (e−nβ(hω

l
−μl))1(μl ≤ 1/n). (4.12)

Now we have to show the uniform convergence of the sum over n to be able to take the term
by term limit with respect to l. Since for any bounded operator A and for any trace-class
non-negative operator B one has TrAB ≤ ‖A‖TrB , we get

al(n) := 1

Vl

Tr e−th0
l e−nβ(hω

l
−μl)1(μl ≤ 1/n)

≤ 1

Vl

Tr e−nβ(hω
l
−μl)1(μl ≤ 1/n). (4.13)

For ρ < ρc, the uniform convergence in (4.11) is immediate. Indeed, for l large enough,
the chemical potential satisfies μl < μ∞/2 < 0, which by (3.1) provides the following a.s.
estimate for (4.13):

al(n) ≤ enβμ∞/2
∫

[0,∞)

νω
l (dE)e−βE ≤ K1e

nβμ∞/2, (4.14)

with some constant K1.
However, for the case ρ ≥ ρc, this approach does not work, since, in fact, for any finite

l the solutions μl = μω
l of (3.5) could be positive with some probability, event though by

condition (iii) (see Sect. 2) it has to vanish a.s. in the TL. We use, therefore, the bound:

al(n) ≤ a1
l (n) + a2

l (n),

a1
l (n) := 1

Vl

eβ
∑

{i:Eω,l
i

≤1/n1−η}
e−nβE

ω,l
i ,

a2
l (n) := 1

Vl

eβ
∑

{i:Eω,l
i

>1/n1−η}
e−nβE

ω,l
i ,

which follows, for some 0 < η < 1, from the constraint μln ≤ 1 due to the indicator function
in (4.13). Then the first term is bounded from above by:

a1
l (n) ≤ eβνω

l (nη−1).

On the other hand, by Theorem 5.1 (finite-volume Lifshitz tails), for α > 0 and 0 < γ <

d/2, there exists a subset �̃ ⊂ � of full measure, P(�̃) = 1, such that for any ω ∈ �̃ there
exists a positive finite energy E (ω) := Eα,γ (ω) > 0 for which one obtains:

νω
l (E) ≤ e−α/Eγ

,

for all E < E (ω). Therefore, for any configuration ω ∈ �̃ (i.e. almost surely) we have the
volume independent estimate for all n > N (ω) := E (ω)1/(η−1):

a1
l (n) ≤ eβe−αn(1−η)γ

. (4.15)
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To estimate the coefficients a2
l (n) from above, we use the upper bound:

a2
l (n) ≤

∫
[1/n1−η,∞)

νω
l (dE) e−nβE ≤ e−βnη/2

∫
[1/n1−η,∞)

νω
l (dE) e−nβE/2

≤ e−βnη/2
∫

[0,∞)

νω
l (dE) e−βE/2.

Then for some K2 > 0 independent of l we obtain:

a2
l (n) ≤ K2e

−βnη/2. (4.16)

Therefore, by (4.14) in the case ρ < ρc, and by (4.15), (4.16) for ρ ≥ ρc, we find that
there exists a sequence a(n) (independent of l) such that:

al(n) ≤ a(n) and
∑
n≥1

a(n) < ∞. (4.17)

Thus, the series (4.12) is uniformly convergent in l, and one can exchange sum and the limit:

lim
l→∞

fl(t) = lim
l→∞

∞∑
n=0

al(n) =
∞∑

n=0

lim
l→∞

al(n).

The rest of the proof is largely inspired by the paper [4]. Let

�T
(x,x′) := {ξ : ξ(0) = x, ξ(T ) = x ′}

be the set of continuous trajectories (paths) {ξ(s)}T
s=0 in R

d , connecting the points x, x ′,
and let wT denote the normalized Wiener measure on this set. Using the Feynman-Kac
representation, we obtain the following limit:

lim
l→∞

al(n) = lim
l→∞

1

Vl

Tr e−th0
l e−nβ(hω

l
−μl)1(μl ≤ 1/n)

= lim
l→∞

1

Vl

∫
�l

∫
�l

dxdx ′e−th0
l (x, x ′)e−nβ(hω

l
−μl)(x ′, x)

= enβμ∞ lim
l→∞

1

Vl

∫
�l

∫
�l

dxdx ′ e
−‖x−x′‖2(1/2nβ+1/2t)

(4π2tnβ)d/2

×
∫

�
nβ

(x′,x)

wnβ(dξ)e− ∫ nβ
0 dsvω(ξ(s))χ�l ,nβ(ξ)

∫
�t

(x,x′)
wt (dξ ′)χ�l,t (ξ

′), (4.18)

where we denote by χ�l,T (ξ) the characteristic function of paths ξ such that ξ(t) ∈ �l for
all 0 < t < T . Using Lemma A.2, we can eliminate these restrictions, and also extend one
spatial integration over the whole space:

lim
l→∞

1

Vl

Tr e−th0
l e−nβ(hω

l
−μl)

= enβμ∞ lim
l→∞

∫
Rd

dx
1

Vl

∫
�l

dx ′ e
−‖x−x′‖2(1/2nβ+1/2t)

(4π2tnβ)d/2

∫
�

nβ

(x′,x)

wnβ(dξ)e− ∫ nβ
0 dsvω(ξ(s)).

(4.19)
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Now, by the ergodic theorem, we obtain:

lim
l→∞

al(n)

= lim
l→∞

1

Vl

Tr e−th0
l e−nβ(hω

l
−μl)

= enβμ∞ lim
l→∞

1

Vl

∫
�l

dx ′
{∫

Rd

dx
e−‖x−x′‖2(1/2nβ+1/2t)

(4π2tnβ)d/2

∫
�

nβ

(x′,x)

wnβ(dξ)e− ∫ nβ
0 dsvω(ξ(s))

}

= enβμ∞Eω

{∫
Rd

dx
e−‖x‖2(1/2nβ+1/2t)

(4π2tnβ)d/2

∫
�

nβ
(0,x)

wnβ(dξ)e− ∫ nβ
0 dsvω(ξ(s))

}
. (4.20)

We then get the explicit expression for the limiting Laplace transform:

f (t;β,μ∞) =
∑
n≥1

enβμ∞
∫

Rd

dx
e−‖x‖2(1/2nβ+1/2t)

(4π2tnβ)d/2
Eω

{∫
�

nβ
(0,x)

wnβ(dξ)e− ∫ nβ
0 dsvω(ξ(s))

}
,

which finishes the proof. �

Corollary 4.1 For any ρ the sequence of random measures m̃
(1)
l converges a.s. in the weak

sense to a bounded, absolutely continuous non-random measure m̃(1), with density F(ε)

given by

F(ε) := (2ε)d/2−1
∫

S1
d

dσg(
√

2εnσ ).

Here, S1
d denotes the unit sphere in R

d , nσ the outward drawn normal unit vector, dσ the
surface measure on S1

d and the function g has the form

g(k) = 1

(2π)d/2

∫
Rd

dxeikx
∑
n≥1

enβμ∞Eω

(
Knβ

ω (x,0)
)
. (4.21)

Proof By Theorem 4.2, the existence of the weak limit m̃(1) follows from the existence of
the limiting Laplace transform. Moreover, we have the following explicit expression:

∫
R

m̃(1)(dε)e−tε

=
∫

Rd

dx
e−‖x‖2/2t

(2πt)d/2

∑
n≥1

enβμ e−‖x‖2/2nβ

(2πnβ)d/2
Eω

{∫
�

nβ
(0,x)

wnβ(dξ)e− ∫ nβ
0 dsvω(ξ(s))

}

=
∫

[0,∞)

dre−t‖r‖2/2rd−1
∫

S1
d

dσg(rnσ )

=
∫

[0,∞)

dεe−tε(2ε)d/2−1
∫

S1
d

dσg(
√

2εnσ ),

which proves the corollary. �
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Corollary 4.2 The measure m̃(1) satisfies the following property:

∫
[0,∞)

m̃(1)(dε) =
{

ρ if ρ < ρc,

ρc if ρ ≥ ρc.

Proof By virtue of (4.12) we have:

∫
[0,∞)

m̃(1)(dε) = f (0;β,μ∞) = lim
l→∞

∑
n≥1

1

Vl

Tr e−nβ(hω
l
−μl)1(μl ≤ 1/n).

Note that by uniformity of convergence of the sum, see (4.15), (4.16), we can take the limit
term by term (for any value of ρ), and then:

∫
[0,∞)

m̃(1)(dε) =
∑
n≥1

lim
l→∞

1

Vl

Tr e−nβ(hω
l
−μl)

=
∑
n≥1

∫
[0,∞)

ν(dE)e−nβ(E−μ∞)

=
∫

[0,∞)

ν(dE)(eβ(E−μ∞) − 1)−1,

where we use Fubini’s theorem for the last step. �

We are now ready for the proof of the main result of this section:

Proof of Theorem 4.1 We first treat the case ρ < ρc . In this situation, the measure m̃
(2)
l is

equal to 0 for l large enough, see (4.9), since the solution liml→∞ μω
l (3.5) in the TL is a.s.

strictly negative. Thus, the total occupation measure m̃l is reduced to m̃
(1)
l and the theorem

follows from Corollary 4.1.
Now, consider the case ρ ≥ ρc . Choose a subsequence lr such that the total kinetic-energy

states occupation measures m̃lr converge weakly and a.s., and let the measure m̃ be its limit.
By Corollary 4.1, all subsequences of measures m̃

(1)
lr

converge to the limiting measure m̃(1).
Therefore, by (4.9), we obtain the weak a.s. convergence:

lim
r→∞ m̃

(2)
lr

=: m̃(2).

By Lemma 4.2, we know that the measure m̃ is absolutely continuous on (0,∞), and by
Corollary 4.1 that m̃(1) is absolutely continuous on [0,∞). Therefore we get:

m̃a.c. = m̃(1) + m̃(2)a.c.,

where a.c. denotes the absolute continuous components.
By definition of the total measure (4.9), m̃([0,∞)) = ρ and by Lemma 4.1, m̃({0}) ≥

ρ − ρc. Thus, m̃((0,∞)) ≤ ρc and by Corollary 4.2, we can then deduce that the measure
m̃(2) has no absolutely continuous component and therefore consists at most of an atom at
ε = 0. Consequently, the full measure m̃ can be expressed as:

m̃ = m̃a.c. + bδ0 = m̃(1) + bδ0,
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and since by Corollary 4.2

b = ρ −
∫

R+
m̃a.c.

lr
(dε) = ρ −

∫
R+

m̃
(1)
lr

(dε) = ρ − ρc

for the converging subsequence m̃lr , we have:

lim
lr→∞

m̃lr = m̃(1) + (ρ − ρc)δ0.

By (4.22) and Corollary 4.1, this limit is independent of the subsequence. Then, the limit of
any convergent subsequence is the same, and therefore, using Feller’s selection theorem, see
[21], Chap. VIII.6, the total kinetic states occupation measures m̃l converge weakly to this
limit. �

5 Finite Volume Lifshitz Tails

In this section, we give the proof of one important building block of our analysis, Theo-
rem 5.1 about the finite-volume Lifshitz tails. Recall that this behaviour is a well-known
feature of disordered systems, essentially meaning that for Shrödinger operators which are
semi-bounded from below, there are exponentially few eigenstates with energy close to
the bottom of the spectrum. To our knowledge, however, this is always shown only in the
infinite-volume limit, see e.g. [16]. Here, we derive a finite-volume estimate for the density of
states, uniformly in l, though it could be trivial for small volumes. As one would expect our
result is weaker than the asymptotic one, in the sense that we prove it for Lifshitz exponent
smaller than the limiting one.

Theorem 5.1 Let the random potential vω satisfy the assumptions (i)–(iii) of Sect. 2. Then
for any α > 0 and 0 < γ < d/2, there exists a set �̃ ⊂ � of full measure, P(�̃) = 1, such
that for any configuration ω ∈ �̃ one can find a positive finite energy E (ω) := Eα,γ (ω), for
which one has the estimate:

νω
l (E) ≤ e−α/Eγ

for all E < E (ω) and for all l.

Remark 5.1 We want to stress that the statement in Theorem 5.1 is valid for all l, but of
course, it can be trivial for small l. For example from the positivity of the potential we know
that νω

l (E) = 0 for E < π2d/l2 and therefore the estimate is trivial for l < π/
√

E (ω).

For the proof, we first need a result from [14].

Lemma 5.1 By assumption (ii) (Sect. 2) one has,

p = P
{
ω : vω(0) = 0

}
< 1.

Let α > p/(1−p), B = π/(1+α), and E
ω,l,N
1 := E

ω,N
1 be the first eigenvalue of the random

Schrödinger operator (2.3) with Neumann (instead of Dirichlet) boundary conditions. Then,
for l large enough, there exists an independent of l constant A = A(α), such that

P
{
ω : Eω,N

1 < B/l2
}

< e−AVl . (5.1)
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Detailed conditions on the random potential and a sketch of the proof of this lemma are
given in Appendix B. Now we use Lemma 5.1 to prove the following result:

Lemma 5.2 Assume that the random potential satisfies the assumptions of Lemma 5.1. Then
for any α > 0 and 0 < γ < d/2,

∑
n≥1

P
{
�
{
i : Eω,l

i < 1/n
}

> Vle
−αnγ

, for some l ≥ 1
}

< ∞.

Proof Notice that

∑
n≥1

P
{
�
{
i : Eω,l

i < 1/n
}

> Vle
−αnγ

, for some l ≥ 1
} =

∑
n≥1

P

{⋃
l≥1

Sn
l

}
, (5.2)

where Sn
l is the set

Sn
l :=

{
ω : �

{
i : Eω,l

i <
1

n

}
> Vle

−αnγ

}
.

The sum in the right-hand side of (5.2) does not provide a very useful upper bound, since
the sets Sn

l are highly overlapping. We thus need to define a new refined family of sets to
avoid this difficulty.

To this end we let [a]+ be the smallest integer ≥ a, and we define the family of sets:

V n
k :=

{
ω : �

{
i : Eω,[(keαnγ

)1/d ]+
i <

1

n

}
≥ k

}
.

Let k := [Vle
−αnγ ]+. Since Vl = ld , this implies that hω

l ≥ hω

[(keαnγ
)1/d ]+ , and therefore:

�

{
i : Eω,[(keαnγ

)1/d ]+
i <

1

n

}
≥ �

{
i : Eω,l

i <
1

n

}
.

If now ω ∈ Sn
l , then by the definition of k we obtain:

�

{
i : Eω,l

i <
1

n

}
≥ k,

since the left-hand side is itself an integer. Thus, Sn
l ⊂ V n

k and:

P

(⋃
l≥1

Sn
l

)
≤ P

(⋃
k≥1

V n
k

)
. (5.3)

We define also the sets:

Wn
k :=

{
ω : �

{
i : Eω,[(keαnγ

)1/d ]+
i <

1

n

}
= k

}
. (5.4)

Let ω ∈ (V n
k \ Wn

k ). Then by hω

[((k+1)eαnγ
)1/d ]+ ≤ hω

[(keαnγ
)1/d ]+ we get:

�

{
i : Eω,[((k+1)eαnγ

)1/d ]+
i <

1

n

}
≥ �

{
i : Eω,[(keαnγ

)1/d ]+
i <

1

n

}
≥ k + 1.
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Hence, (V n
k \ Wn

k ) ⊂ V n
k+1, and therefore we have for any fixed n and k:

V n
k ⊂ Wn

k ∪ V n
k+1. (5.5)

Applying this inclusion M times, for k = 1, . . . ,M , we obtain:

M⋃
k=1

V n
k ⊂

(
Wn

1 ∪
M⋃

k=2

V n
k

)
⊂

(
Wn

1 ∪ Wn
2 ∪

M⋃
k=2

V n
k

)
⊂ · · · ⊂

(
M⋃

k=1

Wn
k

)
∪ V n

M+1. (5.6)

Then we take the limit M → ∞ to recover the infinite union that one needs in (5.3) and we
use the inclusion (5.6) to find the inequality:

P

(⋃
k≥1

V n
k

)
= lim

M→∞
P

(
M⋃

k=1

V n
k

)

≤ lim
M→∞

(
M∑

k=1

P
(
Wn

k

) + P
(
V n

(M+1)

)) =
∞∑

k=1

P
(
Wn

k

) + lim
M→∞

P
(
V n

M

)
. (5.7)

The limit in the last term can be calculated directly:

lim
M→∞

P(V n
M) = lim

M→∞
P

{
ω : �

{
i : Eω,[(Meαnγ

)1/d ]+
i <

1

n

}
≥ M

}

= lim
M→∞

P

{
ω : νω

[(Meαnγ
)1/d ]+(1/n) ≥ M

[(Meαnγ
)1/d ]d+

}

= P
{
ω : ν(1/n) ≥ Ke−αnγ }

, (5.8)

for some constant K . In the last step we used dominated convergence theorem.
Now we can use the Lifshitz tails representation for the asymptotics of the a.s. non-

random limiting IDS, ν(E), see (3.11), which implies:

lim sup
n→∞

eand/2
ν(1/n) ≤ 1, (5.9)

for a > 0. Since we assumed that 0 < γ < d/2, there exists n0 < ∞ such that by (5.8) and
(5.9) for all n > n0 we get:

lim
M→∞

P
(
V n

M

) = 0.

This last result, along with (5.3) and (5.7), implies that:

∑
n>n0

P

(⋃
l≥l0

Sn
l

)
≤

∑
n>n0

∞∑
k=1

P
(
Wn

k

)
. (5.10)

Now, we show that the upper bound in (5.10) is finite. First we split the box �[(keαnγ
)1/d ]+

into m(k,n) disjoints sub-cubes of the side l(k, n), with the following choice of parameters:

m(k,n) := [kMn]+, Mn := B−d/2eαnγ

n−d/2,
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l(k, n) := [(keαnγ
)1/d ]+

(m(k,n))1/d
.

Here B is the constant that comes from Lemma 5.1. Now by the Dirichlet-Neumann in-
equality, see e.g. [22], Chap. XIII.15, we get:

hD

[(keαnγ
)1/d ]+ ≥ hN

[(keαnγ
)1/d ]+ ≥

m(k,n)⊕
j=1

h
j,N

l(k,n), (5.11)

where h
j,N

l(k,n) denotes the Schrödinger operator defined in the j -th sub-cube of the side
l(k, n), with Neumann boundary conditions. Note that, by the positivity of the random po-
tential, we obtain:

E
ω,N
j,2 ≥ εN

j,2 ≥ π

l(k,n)2
≥ 1

n
. (5.12)

Here E
ω,N
j,2 denotes the second eigenvalue of the operator h

j,N

l(k,n), and εN
j,2 the second eigen-

value of −�
j,N

l(k,n), i.e. the kinetic-energy operator defined in the j -th sub-cube of the side
l(k, n) with the Neumann boundary conditions.

By (5.12), we know that to estimate the probability of the set (5.4) by using the Dirichlet-
Neumann inequality (5.11), only the ground state of each operator h

j,N

l(k,n) is relevant. Since
the sub-cubes are stochastically independent, we have:

P
(
Wn

k

) ≤ P
{
ω : �{j : Eω,N

j,1 < 1/n
} = k

} ≤ m(k,n)Ckq
k(1 − q)m(k,n)−k ≤ m(k,n)Ckq

k

with q being the probability P{ω : Eω,N
j,1 < 1/n}. The latter can be estimated by Lemma 5.1.

So, finally we obtain the upper bound:

P
(
Wn

k

) ≤ m(k,n)Ck exp
{−kA(l(k, n))d

}
. (5.13)

Using Stirling’s inequalities, see [23], Chap. II.12:

(2π)1/2nn+1/2e−n ≤ n! ≤ 2(2π)1/2nn+1/2e−n

we can give an upper bound for the binomial coefficients m(k,n)Ck in the form:

2(2π)
1
2 (kMn + δ)(kMn+δ+1/2) exp(−kMn + δ)

(2π)kk+ 1
2 exp(−k) · (kMn + δ − k)(kMn+δ−k+1/2) exp(−kMn + δ − k)

, (5.14)

where δ ≥ 0 is defined by:

m(k,n) = [kMn]+ = kMn + δ.

Then (5.14) implies the estimate:

m(k,n)Ck ≤ K1
(kMn + δ)kMn+δ+1/2

kk+ 1
2 (kMn − k)kMn+δ−k+1/2

≤ K1(Mn)
k

(
(1 + σ1)

(kMn+δ+ 1
2 )

(1 − σ2)
(kMn+δ+ 1

2 −k)

)
,

for some K1 > 0 and

σ1 := δ(kMn)
−1, σ2 := M−1

n .
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Since δ/k < 1 and σ1,2 → 0 as n → ∞, and also using the fact that x ln(1 + 1/x) → 1 as
x → ∞, we can find a constant c > 0 such that, for n large enough one gets the estimate:

m(k,n)Ck ≤ K1(Mn)
k

(
(1 + M−1

n )(kMn)

(1 − M−1
n )(kMn−k)

)
≤ K1(Mn)

keck. (5.15)

The side l(k, n) of sub-cubes has a lower bound:

l(k, n) = [(keαnγ
)1/d ]+

(m(k,n))1/d
≥ (keαnγ

)1/d

(keαnγ
(Bn)−d/2 + δ)1/d

≥
(

Bd/2nd/2 1

1 + σ1

)1/d

. (5.16)

Combining (5.15), (5.16) and (5.13) we obtain a sufficient upper bound:

∑
k≥1

P
(
Wn

k

) ≤
∑
k≥1

m(k,n)Cke
−kAld (k,n)

≤
∑
k≥1

K1(Mn)
kecke−kABd/2nd/2/(1+σ1)

≤ K2

∑
k≥1

exp
{
k
(
αnγ − (d/2) ln(nB) + c − ABd/2nd/2

)}

≤ K3

∑
k≥1

expk
(
αnγ − ABd/2nd/2 + K4

) ≤ K5 exp
(−K6n

d/2
)
.

Here Ki are some finite, positive constants independent of k, n, l, for any n large enough.
Now the lemma immediately follows from (5.10). �

Proof of Theorem 5.1 Let An to be the event:

An := {ω : νω
l (1/n) > e−αnγ

for some l}. (5.17)

By Lemma 5.2, we have:

∑
n≥1

P
(
An

)
< ∞,

and therefore, by the Borel-Cantelli lemma one gets that with probability one, only a finite
number of events An occur. In other words, there is a subset �̃ ⊂ � of full measure, P(�̃) =
1, such that for any ω ∈ �̃ one can find a finite and independent on l number n0(ω) < ∞ for
which, in contrast to (5.17), we have:

νω
l (1/n) ≤ e−αnγ

, for all n > n0(ω) and for all l ≥ 1.

Define E (ω) := 1/n0(ω). For any E ≤ E (ω), we can find n ≥ n0(ω) such that:

1

2n
≤ E ≤ 1

n
,

and the theorem follows with the constant α modified by a factor 2−γ . �
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6 On the Nature of the Generalized Condensates in the Luttinger-Sy Model

In this section, we study the van den Berg-Lewis-Pulé classification of generalized BE con-
densation (see discussion in Sect. 3) in a particular case of the so-called Luttinger-Sy model
with point impurities [3]. Formally the single particle Hamiltonian for this model is

hω
l = −1

2
� + a

∑
j

δ(x − xω
j ), (6.1)

where the xj ’s are distributed according to a Poisson law and a = +∞.
We first recalls some definitions to make sense of this formal Hamiltonian. Let u(x) ≥ 0,

x ∈ R, be a continuous function with a compact support called a (repulsive) single-impurity
potential. Let {μω

λ }ω∈� be the random Poisson measure on R with intensity λ > 0:

P({ω ∈ � : μω
λ (�) = n}) = (λ|�|)n

n! e−λ|�|, n ∈ N0 = N ∪ {0}, (6.2)

for any bounded Borel set � ⊂ R. Then the non-negative random potential vω generated by
the Poisson distributed local impurities has realizations

vω(x) :=
∫

R

μω
λ (dy)u(x − y) =

∑
xω
j

∈Xω

u(x − xω
j ). (6.3)

Here the random set Xω corresponds to impurity positions Xω = {xω
j }j ⊂ R, which are the

atoms of the random point Poisson measure, i.e., �{Xω � �} = μω
λ (�) is the number of

impurities in the set �. Since the expectation E(νω
λ (�)) = λ|�|, the parameter λ coincides

with the density of impurities on R.
Luttinger and Sy defined their model by restriction of the single-impurity potential to

the case of point δ-potential with amplitude a → +∞. Then the corresponding random
potential (6.3) takes the form:

vω
a (x) :=

∫
R

νω
λ (dy)aδ(x − y) = a

∑
xω
j

∈Xω

δ(x − xω
j ). (6.4)

Now the self-adjoint one-particle random Schrödinger operator hω
a := h0 � vω

a is de-
fined in the sense of the sum of quadratic forms (2.2). The strong resolvent limit hω

LS :=
s.r. lima→+∞ hω

a is the Luttinger-Sy model.
Since Xω generates a set of intervals {Iω

j := (xω
j−1, x

ω
j )}j of lengths {Lω

j := xω
j − xω

j−1}j ,
one gets decompositions of the one-particle Luttinger-Sy Hamiltonian:

hω
LS =

⊕
j

hD(Iω
j ), dom(hω

LS) ⊂
⊕

j

L2(Iω
j ), ω ∈ �, (6.5)

into random disjoint free Schrödinger operators {hD(Iω
j )}j,ω with Dirichlet boundary con-

ditions at the end-points of intervals {Iω
j }j . Then the Dirichlet restriction hω

l,D of the Hamil-
tonian hω

LS to a fixed interval �l = (−l/2, l/2) and the corresponding change of notations

are evident: e.g., {Iω
j }j �→ {Iω

j }Ml(ω)

j=1 , where Ml(ω) is total number of subintervals in �l cor-
responding to the set Xω . For rigorous definitions and some results concerning this model
we refer the reader to [5].
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Since this particular choice of random potential is able to produce Lifhsitz tails in the
sense of (3.11), see Proposition 3.2 in [5], it follows that such a model exhibits a generalized
BEC in random eigenstates, see (3.4). In fact, it was shown in [5] that only the random
ground state φ

ω,l
1 of hω

l,D is macroscopically occupied. In our notations this means that

lim
l→∞

1

l
〈Nl(φ

ω,l
1 )〉l =

{
0 if ρ < ρc,

ρ − ρc if ρ ≥ ρc,

lim
l→∞

1

l
〈Nl(φ

ω,l
i )〉l = 0, for all i > 1.

(6.6)

According to the van den Berg-Lewis-Pulé classification this corresponds to the type I Bose-
condensation in the random eigenstates {φω

i }i≥1.
Following the line of reasoning of Sect. 4, we now consider the corresponding BEC in

the kinetic-energy eigenstates. We retain the notation used in that section and explain briefly
the minor changes required in the application of our method to the Luttinger-Sy model.

We first state the equivalent of Theorem 4.1 for this particular model.

Theorem 6.1 Theorem 4.1 holds with the function g defined as follows

g(k) = 1

(2π)d/2

∫
Rd

dxeikx
∑
n≥1

enβμ∞ e−‖x‖2(1/2nβ)

(2πnβ)d/2

×
∫

�
nβ
(0,x)

wnβ(dξ) exp
(
−λ

(
sup

s

ξ(s) − inf
s

ξ(s)
))

.

The scheme of the proof is the same as above, cf. Sects. 4 and 5. First, we note that
Lemmas 4.1 and 4.2 apply immediately. The positivity of the random potential has to be
understood in terms of quadratic forms, see (2.4).

Before continuing, we need to highlight a minor change concerning the finite-volume
Lifshitz tails arguments. Although the Theorem 5.1 is valid for the Luttinger-Sy model, its
proof (see Sect. 5) requires a minor modification, as the assumption of Lemma 5.1 is clearly
not satisfied for the case of singular potentials. However, by direct calculation we can obtain
the same estimate with the constant B = π2/4 in (5.1). First, suppose that there is at least
one impurity in the box, then the eigenvalues will be of the form (for some j )

(n2π2)/(Lω
j )2, n = 1,2, . . .

if Iω
j is an inner interval (that is, its two endpoints correspond to impurities), and

((n + 1/2)2π2)/(Lω
j )2, n = 0,1,2, . . . .

If Iω
j is an outer interval (that is, one endpoint corresponds to an impurity, and the other one

to the boundary of �l). Therefore, E
ω,l,N
1 ≥ B/l2 since obviously Lω

j < l. Now, if there is

no impurity in the box �l , then E
ω,l,N
1 = 0 < B/l2. But due to the Poisson distribution (6.2)

this happens with probability e−λl , proving the same estimate as in Lemma 5.1.
With this last observation, the proof of the Theorem 5.1 in Sect. 5 can be carried out

verbatim, without any further changes.
Our next step is to split the measure m̃l into two, m̃

(1)
l and m̃

(2)
l , see (4.9), and prove the

statement equivalent to the Theorem 4.2.
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Theorem 6.2 For any d ≥ 1, the sequence of Laplace transforms of the measures m̃
(1)
l :

fl(t;β,μl) :=
∫

R

m̃
(1)
l (dε) e−tε

converges for any t > 0 to a (non-random) limit f (t;β,μ∞) , which is given by:

f (t;β,μ∞) =
∑
n≥1

enβμ∞
∫

Rd

dx
e−‖x‖2(1/2nβ+1/2t)

(4π2tnβ)d/2

×
∫

�
nβ
(0,x)

wnβ(dξ) exp
(
−λ

(
sup

s

ξ(s) − inf
s

ξ(s)
))

.

Proof We follow the proof of Theorem 4.2, using the same notation. The uniform conver-
gence is obtained the same way, since the bounds (4.14), (4.15), and (4.16) are also valid in
this case. As in (4.20), we can use the ergodic theorem to obtain:

lim
l→∞

al(n) = enβμ∞Eω

∫
R

dx
e−‖x‖2(1/2nβ+1/2t)

(4π2tnβ)d/2

∑
j

∫
�

nβ
(0,x)

wnβ(dξ)χIj
ω,nβ(ξ). (6.7)

We have used the fact that the Dirichlet boundary conditions at the impurities split up the
space Hl into a direct sum of Hilbert spaces (see (6.5)). This can be seen from the expression

lim
l→∞

al(n) = enβμ∞
∫

R

dx
e−‖x‖2(1/2nβ+1/2t)

(4π2tnβ)d/2
Eω

∫
�

nβ
(0,x)

wnβ(dξ)e
− ∫ nβ

0 dsa
∑

xω
j

∈Xω δ(ξ(s)−xω
j

)

by formally putting the amplitude, a, of the point impurities (6.4) equal to +∞. Because of
the characteristic functions χIω

j
,nβ , which constrain the paths ξ to remain in the interval Iω

j

in time nβ , the sum in (6.7) reduces to only one term:

lim
l→∞

al(n) = enβμ∞
∫

R

dx
e−‖x‖2(1/2nβ+1/2t)

(4π2tnβ)d/2
Eω

∫
�

nβ
(0,x)

wnβ(dξ)χ(aω,bω),nβ(ξ), (6.8)

where (aω, bω), is the interval among the Iω
j ’s which contains 0.

The expression in (6.8) can be simplified further by computing the expectation Eω ex-
plicitly.
First, note that the Poisson impurity positions: aω, bω are independent random variables and
by definition, aω is negative while bω is positive. For the random variable bω the distribution
function is:

P (bω < b) := P{(0, b) contains at least one impurity} = 1 − e−λb,

and therefore its probability density is λe−λb on (0,∞). Similarly for aω one gets:

P (aω < a) := P{(a,0) contains no impurities} = e−λ|a| = eλa,

and thus its density is λeλa on (−∞,0). Using these distributions in (6.8) we obtain:

lim
l→∞

al(n) = enβμ∞λ2
∫ 0

−∞
daeλa

∫ ∞

0
dbe−λb

∫
R

dx
e−‖x‖2(1/2nβ+1/2t)

(4π2tnβ)d/2
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×
∫

�
nβ
(0,x)

wnβ(dξ)χ(a,b)(ξ)

= enβμ∞λ2
∫ 0

−∞
daeλa

∫ ∞

0
dbe−λb

∫
R

dx
e−‖x‖2(1/2nβ+1/2t)

(4π2tnβ)d/2

×
∫

�
nβ
(0,x)

wnβ(dξ)1
(

sup
s

(ξ(s)) ≤ b
)

1
(

inf
s

(ξ(s)) ≥ a
)

= enβμ∞λ2
∫

R

dx
e−‖x‖2(1/2nβ+1/2t)

(4π2tnβ)d/2

×
∫

�
nβ
(0,x)

wnβ(dξ)

∫ infs (ξ(s))

−∞
daeλa

∫ ∞

sups (ξ(s))

dbe−λb,

and the Theorem 6.2 follows by explicit computation of the last two integrals. �

Proof of Theorem 6.1 Having proved Theorem 6.2, it is now straightforward to derive the
analogue of Corollary 4.1 for the Luttinger-Sy model. Note also that the Corollary 4.2 re-
mains unchanged, since only the uniform convergence was used. With these results, the
proof of Theorem 6.1 follows in the same way as for Theorem 4.1. �

We have proved, in Theorem 6.1, that the Luttinger-Sy model exhibits g-BEC in the ki-
netic energy states. But, in this particular case, we can go further and determine the particular
type of g-BEC in the kinetic energy states. Recall that the g-BEC in the random eigenstates
is only in the ground state, that is, of the type I, see (6.6) and [5] for a comprehensive review.
Here we shall show that the g-BEC in the kinetic-energy eigenstates is in fact of the type III,
namely:

Theorem 6.3 In the Luttinger-Sy model none of the kinetic-energy eigenstates is macro-
scopically occupied:

lim
l→∞

1

l
〈Nl(ψk)〉l = 0 for all k ∈ �∗

l ,

even though for ρ > ρc there is a generalized BEC.

To prove this theorem we shall exploit the finite-volume localization properties of the
random eigenfunctions φ

ω,l
i of the Hamiltonian hω

l,D . Since the impurities split up the box

�l into a finite number Ml(ω) of sub-intervals {Iω
j }Ml(ω)

j=1 , by virtue of the corresponding
orthogonal decomposition of hω

l,D , cf. (6.5), the normalized random eigenfunctions φω,l
s are

in fact sine-waves with supports in each of these sub-intervals and thus satisfy:

|φω,l
s (x)| <

√
2

Lω
js

1Iω
js

(x), 1 ≤ js ≤ Ml(ω). (6.9)

We require an estimate of the size Lω
j of these random sub-intervals, which we obtain in the

following lemma.
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Lemma 6.1 Let λ > 0 be a mean concentration of the point Poisson impurities on R. Then
eigenfunctions φω

j are localized in sub-intervals of logarithmic size, in the sense that for any
κ > 4, one has a.s. the estimate:

lim sup
l→∞

max1≤j≤Ml(ω) L
ω
j

ln l
≤ κ

λ
.

Proof Define the set

Sl :=
{
ω : max

1≤j≤Ml(ω)

Lω
j >

κ

λ
ln l

}
.

Let n := [2λl/(κ ln l)]+, and define a new box:

�̃l :=
[
−n

2

(
κ

2λ
ln l

)
,
n

2

(
κ

2λ
ln l

)]
⊃ �l.

Split this bigger box into n identical disjoints intervals {I l
m}n

m=1 of size κ(2λ)−1 ln l. If ω ∈ Sl ,
then there exists at least one empty interval I l

m (interval without any impurities), and there-
fore the set

Sl ⊂
⋃

1≤m≤n

{ω : I l
m is empty}.

By the Poisson distribution (6.2), the probability for the interval I l
m to be empty depends

only on its size, and thus

P(Sl) ≤ n exp

(
−λ

κ

2λ
ln l

)
≤

[
2λl

κ ln l

]
+

l−κ/2.

Since we choose κ > 4, it follows that

∑
l≥1

P(Sl) < ∞.

Therefore, by the Borel-Cantelli lemma, there exists a subset �̃ ⊂ � of full measure,
P(�̃) = 1, such that for each ω ∈ �̃ one can find l0(ω) < ∞ with

P

{
ω : max

1≤j≤Ml(ω)

Lω
j ≤ κ

λ
ln l

}
= 1,

for all l ≥ l0(ω). �

Now we can prove the main statement of this section.

Proof of Theorem 6.3 The atom of the measure m̃ has already been established in Theo-
rem 6.1. Concerning the macroscopic occupation of a single state, we have

1

l
〈Nl(ψk)〉l = 1

l

∑
i

|(φω,l
i ,ψk)|2〈Nl(φ

ω,l
i )〉l
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= 1

l

∑
i

〈Nl(φ
ω,l
i )〉l

∣∣∣∣
∫

�l

dxψk(x)φ
ω,l
i (x)

∣∣∣∣
2

≤ 1

l

∑
i

〈Nl(φ
ω,l
i )〉l 1

l

(∫
�l

dx|φω,l
i (x)|

)2

,

where in the last step we have used the bound |ψk| ≤ 1/
√

l. Therefore, by (6.9) and
Lemma 6.1, we obtain a.s. the following estimate:

1

l
〈Nl(ψk)〉l ≤ 1

l

∑
i

〈Nl(φ
ω,l
i )〉l 1

l

κ

λ
ln l,

which is valid for large enough l and for any κ > 4. The theorem then follows by taking the
thermodynamic limit. �

7 Application to Weak (Scaled) Non-random Potentials

It is known for a long time, see e.g. [24, 25], that BEC can be enhanced in low-dimensional
systems by imposing a weak (scaled) external potential. Recently this was a subject of a
new approach based on the Random Boson Point Field method [26]. In this section, we
show that, with some minor modifications our method can be extended to cover also the
case of these scaled non-random potentials.

Let v be a non-negative, continuous real-valued function defined on the closed unit cube
�1 ⊂ R

d . The one-particle Schrödinger operator with a weak (scaled) external potential in
a box �l is defined by:

hl = −1

2
�D + v(x1/l, . . . , xd/ l). (7.1)

Let {ϕl
i ,E

l
i }i≥1 be the set of orthonormal eigenvectors and corresponding eigenvalues of the

operator (7.1). As usual we put E1 ≤ E2 ≤ · · · by convention. The many-body Hamiltonian
for the perfect Bose gas is defined in the same way as in Sect. 2. We keep the notations
m and m̃ for the occupation measures of the eigenstates {ϕl

i }i≥1 and of the kinetic-energy
states respectively. We denote the integrated density of states (IDS) of the Schrödinger op-
erator (7.1) by νl , and by ν = liml→∞ νl its weak limit. We assume that the first eigenvalue
El

1 → 0 as l → ∞, which is the case, when e.g. v(0) = 0. This assumption is equivalent
to condition (iii), Sect. 2. It ensures that for a given mean particle density ρ the chemical
potential μ∞(β,ρ) satisfies the relation (3.6), where μ := μ(β,ρ) is a (unique) solution of
the equation [24]:

ρ =
∑
n≥1

1

(2πnβ)d/2

∫
�1

dxenβ(μ−v(x)) =
∫

[0,∞)

ν0(dE)

∫
�1

dx
(
eβ(E+v(x)−μ) − 1

)−1
, (7.2)

for ρ ≤ ρc , where the boson critical density is given by:

ρc =
∑
n≥1

1

(2πnβ)d/2

∫
�1

dxe−nβv(x) =
∫

[0,∞)

ν0(dE)

∫
�1

dx
(
eβ(E+v(x)) − 1

)−1
. (7.3)
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Here ν0 is the IDS (3.9) of the kinetic-energy operator (2.1). In particular the value ρc = ∞
is allowed in (7.3). If ρc < ∞, the existence of a generalized BEC in the states {ϕl

i }i≥1

follows by the same arguments as in Sect. 3. For example, the choice: v(x) = |x|, makes the
critical density finite even in dimension one, see e.g. [24].

Now, we prove the statements equivalent to the Theorem 4.1:

Theorem 7.1 The sequence {m̃l}l≥1 of the one-particle kinetic states occupation measures
has a weak limit m̃ given by:

m̃(dε) =
{

(ρ − ρc)δ0(dε) + F(ε)ν0(dε), if ρ ≥ ρc,

F (ε)ν0(dε), if ρ < ρc,

where the density F(ε) is defined by:

F(ε) =
∫

�1

dx
(
eβ(ε+v(x)−μ∞) − 1

)−1
,

and μ∞ := μ∞(β,ρ) satisfies the relation (3.6).

We note the similarity of this result with the free Bose gas. Indeed, the kinetic-energy
states occupation measure density is reduced to the free gas one, with the energy shifted by
the external potential v and then averaged over the unit cube.

The proof requires the same tools as in the random case. As before, we split the occupa-
tion measure into two parts:

m̃l = m̃
(1)
l + m̃

(2)
l with

m̃
(1)
l (A) :=

∑
n≥1

1

Vl

TrPA(e−nβ(hl−μl))1(μl ≤ 1/n),

m̃
(2)
l (A) :=

∑
n≥1

1

Vl

TrPA(e−nβ(hl−μl))1(μl > 1/n),

and we prove the following statement:

Theorem 7.2 The sequence of measures m̃
(1)
l converges weakly to a measure m̃(1), which is

absolutely continuous with respect to ν0 with density F(ε) given by:

F(ε) =
∫

�1

dx
(
eβ(ε+v(x)−μ∞) − 1

)−1
.

Proof We follow the line of reasoning of the proof of Theorem 4.2. Let gl(t;β,μl) be the
Laplace transform of the measure m̃

(1)
l :

gl(t;β,μl) =
∫

R

m
(1)
l (dε)e−tε

=
∑
n≥1

1

Vl

Tr e−th0
l

(
e−nβ(hl−μl)

)
1(μl ≤ 1/n). (7.4)
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Again, our aim is to show the uniform convergence of the sum over n with respect to l. Let

al(n) := 1

Vl

Tr e−th0
l e−nβ(hl−μl)1(μl ≤ 1/n)

≤ 1

Vl

Tr e−nβ(hl−μl)1(μl ≤ 1/n). (7.5)

Then for ρ < ρc we can apply a similar argument as for the random case, since the estimate
μl < μ∞/2 < 0 still holds, to obtain:

al(n) ≤ enβμ∞/2
∫

[0,∞)

e−βενl(dε) ≤ K1e
nβμ∞/2.

If ρ ≥ ρc , then μl ≤ 1/n in (7.5) implies that:

al(n) ≤ eβ
∑

i

e−nβEl
i ≤ eβ

(2πnβ)d/2

∫
�1

dxe−nβv(x),

where the last estimate can be found in [24] or [25]. Now the uniform convergence for the
sequence al(n) follows from (7.3), since we assumed that ρc < ∞. The latter implies also
that for ρ ≥ ρc , μ∞(β,ρ) = 0. Thus, we can take the limit of the Laplace transform (7.4)
term by term, that is:

lim
l→∞

al(n) = lim
l→∞

1

Vl

Tr e−th0
l e−nβ(hl−μl)1(μl ≤ 1/n)

= lim
l→∞

1

Vl

∫
�l

∫
�l

dxdx ′e−th0
l (x, x ′)e−nβ(hl−μl)(x ′, x)

= enβμ∞ lim
l→∞

1

Vl

∫
�l

∫
�l

dxdx ′ e
−‖x−x′‖2(1/2nβ+1/2t)

(4π2tnβ)d/2

×
∫

�t
(x,x′)

wt (dξ ′)χ�l,t (ξ
′)

∫
�

nβ

(x′,x)

wnβ(dξ)e− ∫ nβ
0 dsv(ξ(s)/ l)χ�l ,nβ(ξ). (7.6)

Here we have used the Feynman-Kac representation for free e−th0
l (x, y) and for non-free

e−βhl (x, y) Gibbs semi-group kernels, where wT stands for the normalized Wiener measure
on the path-space �T

(x,y), see Sect. 4.1.
Note that by Lemma A.2, which demands only the non-negativity of the potential v, we

obtain for (7.6) the representation:

lim
l→∞

1

Vl

Tr e−th0
l e−nβ(hl−μl)

= enβμ∞ lim
l→∞

∫
Rd

dx
1

Vl

∫
�l

dx ′ e
−‖x−x′‖2(1/2nβ+1/2t)

(4π2tnβ)d/2

×
∫

�
nβ

(x′,x)

wnβ(dξ)e− ∫ nβ
0 dsv(ξ(s)/ l). (7.7)
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Now we express the trajectories ξ in terms of Brownian bridges α(τ) ∈ �̃,0 ≤ τ ≤ 1, we
denote the corresponding measure by D. Letting x̃ = x ′/l, we obtain:

lim
l→∞

1

Vl

Tr e−th0
l e−nβ(hl−μl)

= enβμ∞ lim
l→∞

∫
Rd

dx

∫
�1

dx̃
e−‖x−lx̃‖2(1/2nβ+1/2t)

(4π2tnβ)d/2

×
∫

�̃

D(dα) exp

(
−

∫ nβ

0
dsv

[(
1 − s

nβ

)
x̃ + s

nβ
(x/l) +

√
nβ

l
α(s/nβ)

])
.

Since the integration with respect to x is now over the whole space, we let y = x − lx̃ to get

lim
l→∞

1

Vl

Tr e−th0
l e−nβ(hl−μl)

= enβμ∞ lim
l→∞

∫
Rd

dy

∫
�1

dx̃
e−‖y‖2(1/2nβ+1/2t)

(4π2tnβ)d/2

×
∫

�̃

D(dα) exp

(
−

∫ nβ

0
dsv

(
x̃ + s

nβ
(y/l) +

√
nβ

l
α(s/nβ)

))

= enβμ∞
∫

Rd

dy
e−‖y‖2(1/2nβ+1/2t)

(4π2tnβ)d/2

∫
�1

dx̃e−nβv(x̃),

where the last step follows from dominated convergence. Therefore, we obtain by (7.4) the
following expression for the limiting Laplace transform:

lim
l→∞

gl(t;β,μl) =
∑
n≥1

e−nβ(E−μ∞) 1

(2π(nβ + t))d/2

∫
�1

dxe−nβv(x).

It is now straightforward to invert this Laplace transform (for each term of the sum), to find
that:

F(E)ν0(dE) = lim
l→∞

m̃1
l (dE) =

∑
n≥1

e−nβ(E−μ∞)

(∫
�1

dxe−nβv(x)

)
ν0(dE).

The theorem then follows by Fubini’s theorem. �

Proof of Theorem 7.1 The proof of Theorem 4.1 can be applied directly. Note that Lem-
mas 4.1, 4.2 are still valid, since (as we emphasized in Remarks 4.1, 4.2), their proofs re-
quire only the non-negativity of the external potential. Similarly, Corollary 4.2 now can be
used directly, since we have proved Theorem 7.2. �

Appendix A: Brownian Paths

In this section, we first give an upper estimate of the probability of a Brownian path to leave
some spatial domain, cf. e.g. [27] and the references quoted therein.
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Lemma A.1 Let the set

�T
(x,x′) := {ξ(τ ) : ξ(0) = x, ξ(T ) = x ′}

be continuous trajectories from x to x ′ with the proper time 0 ≤ τ ≤ T , and with the normal-
ized Wiener measure wT on it. Let x, x ′ be in �l , and χ�l,T (ξ) the characteristic function
over �T

(x,x′) of trajectories ξ staying in �l for all 0 ≤ τ ≤ T . Then one gets the estimate:

∫
�T

(x,x′)
wT (dξ)

(
1 − χ�l,T (ξ)

) ≤ e−C(T )(min{d(x,∂�l),d(x′,∂�l)})2
. (A.1)

Proof Define a Brownian bridge α(s),0 ≤ s ≤ 1 by:

ξ(t) = (1 − τ/T )x + τ/T x ′ + √
T α(τ/T ).

Let us consider first the one dimensional case, i.e. �l = [−l/2, l/2]. Without loss of gener-
ality, we can assume that:

d(x, ∂�l) ≤ d(x ′, ∂�l).

Suppose that x > 0, then we have:

−x ≤ x ′ ≤ x and d(x, ∂�l) = l/2 − x.

Assume that the path ξ leaves the box on the right-hand side. Then, for some t , we have:

ξ(t) >
l

2
,

α(t/T ) >
1√
T

(
l

2
+ (t/T − 1)x − t

T
x ′

)
, (A.2)

α(t/T ) >
1√
T

(
l

2
+ (t/T − 1)x − t

T
x

)
= 1√

T
d(x, ∂�l).

The case, when ξ leaves the box on the left-hand side can be treated similarly.
Let x < 0, then we have:

x ≤ x ′ ≤ −x and d(x, ∂�l) = l/2 + x.

Again, assume that the path leaves the box on the right hand-side. Then, for some t , we
have:

ξ(t) >
l

2
,

α(t/T ) >
1√
T

(
l

2
+ (t/T − 1)x − t

T
x ′

)
, (A.3)

α(t/T ) >
1√
T

(
l

2
− (t/T − 1)x ′ − t

T
x ′

)
≥ 1√

T
d(x, ∂�l).
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The case, when ξ leaves the box on the left hand-side can be considered similarly. The
relations (A.2), (A.3) imply that if ξ leaves the box �l in one dimension, then the Brownian
bridge α must satisfy the inequality:

sup
t

|α(t/T )| > C(T )min{d(x, ∂�l), d(x ′, ∂�l)}, (A.4)

for some constant C(T ).
This observation can easily be extended to higher dimensions, when x := (x1, . . . , xd)

and α(s) := (α1(s), . . . , αd(s)). Now, if ξ leaves the (d-dimensional) box �l , there exists at
least one i such that similar to (A.4):

sup
t

|αi(t/T )| > C(T )min{d(xi, ∂i�l), d(x ′
i , ∂i�l)},

where we denote d(xi, ∂i�l) := min{l/2 − xi, l/2 + xi}. Now, since �l are cubes, we get
d(xi, ∂i�l) ≥ d(x, ∂�l) for any x ∈ �l . Then we obtain:

‖α(t/T )‖ > |αi(t/T )|, i = 1, . . . , d,

sup
t

‖α(t/T )‖ > max
i

sup
t

|αi(t/T )|,

sup
t

‖α(t/T )‖ > C(T )min{d(xi, ∂i�l), d(x ′
i , ∂i�l)}

≥ C(T )min{d(x, ∂�l), d(x ′, ∂�l)}.

(A.5)

Therefore, the probability for the path ξ to leave the box is dominated by the probability for
the one-dimensional Brownian bridge α to satisfy (A.5). The latter we can estimate using
the following result from [27]:

P

(
sup

s

α(s) > x
)

≥ Ae−Cx2

valid for some positive constants A,C, which implies the bound (A.1). �

Now we establish a result, that we use in the proof of Theorem 4.2:

Lemma A.2 Let Kt
ω,l(x, x ′), Kt

0,l (x, x ′), Kt
0(x, x ′) be the kernels of operators exp(−thω

l ),
exp(−th0

l ), and exp(−t�/2) respectively. Then

lim
l→∞

1

Vl

∫
�l

∫
�l

dxdx ′Kt
0,l(x, x ′)Knβ

ω,l(x
′, x)

= lim
l→∞

∫
Rd

dx
1

Vl

∫
�l

dx ′Kt+nβ

0 (x, x ′)
∫

�
nβ

(x′,x)

wnβ(dξ)e− ∫ nβ
0 dsvω(ξ(s)). (A.6)

Proof By the Feynman-Kac representation, we obtain:

lim
l→∞

1

Vl

∫
�l

∫
�l

dx dx ′Kt
0,l (x, x ′)Knβ

ω,l(x
′, x)

= lim
l→∞

1

Vl

∫
�l

∫
�l

dx dx ′ e
−‖x−x′‖2(1/2nβ+1/2t)

(4π2tnβ)d/2

×
∫

�
nβ

(x′,x)

wnβ(dξ)e− ∫ nβ
0 dsvω(ξ(s))χ�l ,nβ(ξ)

∫
�t

(x,x′)
wt (dξ ′)χ�l,t (ξ

′).
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To eliminate the characteristic functions restricting the paths ξ, ξ ′ in the last integral, we
shall use Lemma A.1. First, we estimate the error γ (d) when we remove the restriction on
the path ξ :

γ (d) := lim
l→∞

1

Vl

∫
�l

dx

∫
�l

dx ′ e
−‖x−x′‖2(1/2nβ+1/2t)

(4π2tnβ)d/2

×
∫

�
nβ

(x′,x)

wnβ(dξ)e− ∫ nβ
0 dsvω(ξ(s))

(
1 − χ�l,nβ(ξ)

)∫
�t

(x,x′)
wt (dξ ′)χ�l,t (ξ

′)

≤ lim
l→∞

1

Vl

∫
�l

dx

∫
�l

dx ′ e
−‖x−x′‖2(1/2nβ+1/2t)

(4π2tnβ)d/2

∫
�

nβ

(x′,x)

wnβ(dξ)
(
1 − χ�l,nβ(ξ)

)

≤ lim
l→∞

1

Vl

∫
�l

dx

∫
�l

dx ′
I
{
d(x, ∂�l) > d(x ′, ∂�l)

}e−‖x−x′‖2(1/2nβ+1/2t)

(4π2tnβ)d/2

×
∫

�
nβ

(x′,x)

wnβ(dξ)
(
1 − χ�l,nβ(ξ)

)

+ lim
l→∞

1

Vl

∫
�l

dx

∫
�l

dx ′
I
{
d(x, ∂�l ≤ d(x ′, ∂�l)

}e−‖x−x′‖2(1/2nβ+1/2t)

(4π2tnβ)d/2

×
∫

�
nβ

(x′,x)

wnβ(dξ)
(
1 − χ�l,nβ(ξ)

)

≤ lim
l→∞

1

Vl

∫
�l

dx

∫
�l

dx ′Kt
0(x, x ′)Knβ

0 (x ′, x)e−C(nβ)(d(x′,∂�l)
2

+ lim
l→∞

1

Vl

∫
�l

dx

∫
�l

dx ′Kt
0(x, x ′)Knβ

0 (x ′, x)e−C(nβ)(d(x,∂�l)
2
, (A.7)

where the last step is due to Lemma A.1. Since all integrands are positive, we can extend
one of the spatial integrations to the whole space, and hence we get:

γ (d) ≤ lim
l→∞

1

Vl

∫
Rd

dx

∫
�l

dx ′Kt
0(x, x ′)Knβ

0 (x ′, x)e−C(nβ)(d(x′,∂�l)
2

+ lim
l→∞

1

Vl

∫
�l

dx

∫
Rd

dx ′Kt
0(x, x ′)Knβ

0 (x ′, x)e−C(nβ)(d(x′∂�l)
2

≤ lim
l→∞

1

Vl

K
t+nβ

0

∫
�l

dx ′e−C(nβ)(d(x′,∂�l )
2 + lim

l→∞
1

Vl

K
t+nβ

0

∫
�l

dxe−C(nβ)(d(x′∂�l)
2

where we have used the notation K
t+nβ

0 := K
t+nβ

0 (x, x) since these are independent of x.
Finally, using the fact that the boxes �l are cubes of side l, we obtain:

γ (d) ≤ lim
l→∞

K
t+nβ

0

l

∫ l/2

−l/2
dx ′e−C(nβ)(l/2−x′)2 + lim

l→∞
K

t+nβ

0

l

∫ l/2

−l/2
dxe−C(nβ)(l/2−x)2 = 0.
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We can estimate the error estimate due to the removal of the characteristic function for ξ ′ in
(4.18) in the same way. Therefore, we get:

lim
l→∞

1

Vl

∫
�l

∫
�l

dxdx ′ e
−‖x−x′‖2(1/2nβ+1/2t)

(4π2tnβ)d/2

×
∫

�
nβ

(x′,x)

wnβ(dξ)e− ∫ nβ
0 dsvω(ξ(s))χ�l ,nβ(ξ)

∫
�t

(x,x′)
wt (dξ ′)χ�l,t (ξ

′)

= lim
l→∞

1

Vl

∫
�l

∫
�l

dxdx ′ e
−‖x−x′‖2(1/2nβ+1/2t)

(4π2tnβ)d/2

×
∫

�
nβ

(x′,x)

wnβ(dξ)e− ∫ nβ
0 dsvω(ξ(s))

∫
�

p

(x,x′)
wnβ(dξ ′). (A.8)

Now we show that one can replace the first integration over the box �l by one over the
whole space. Let γ̃ (d) be the error caused by this substitution. Then by the positivity of the
random potential we get the estimate:

γ̃ (d) := lim
l→∞

1

Vl

∫
Rd\�l

dx

∫
�l

dx ′ e
−‖x−x′‖2(1/2nβ+1/2t)

(4π2tnβ)d/2

×
∫

�
nβ

(x′,x)

wnβ(dξ)e− ∫ nβ
0 dsvω(ξ(s)+x′)

∫
�t

(x,x′)
wnβ(dξ ′)

≤ lim
l→∞

1

Vl

∫
Rd\�l

dx

∫
�l

dx ′ e
−‖x−x′‖2(1/2nβ+1/2t)

(4π2tnβ)d/2
. (A.9)

In the one-dimensional case the estimate of the error term (A.9) takes the form:

γ̃ (1) ≤ lim
l→∞

1

l

∫ −l/2

−∞
dx

∫ l/2−x

−l/2−x

dy
e−y2(1/2nβ+1/2t)

(4π2tnβ)1/2

+ lim
l→∞

1

l

∫ ∞

l/2
dx

∫ l/2−x

−l/2−x

dy
e−y2(1/2nβ+1/2t)

(4π2tnβ)1/2
. (A.10)

For the first term one gets:

lim
l→∞

1

l

∫ −l/2

−∞
dx

∫ l/2−x

−l/2−x

dy
e−y2(1/2nβ+1/2t)

(4π2tnβ)1/2

= lim
l→∞

1

l

∫ l

0
dy

e−y2(1/2nβ+1/2t)

(4π2tnβ)1/2

∫ l/2

−l/2−y

dx

+ lim
l→∞

1

l

∫ ∞

l

dy
e−y2(1/2nβ+1/2t)

(4π2tnβ)1/2

∫ l/2−y

−l/2−y

dx = 0.

One obtains a similar identity for the second-term in (A.10). Direct calculation shows that,
the error term for higher dimensions (A.9) reduces to a product of one-dimensional terms
(A.10). Then (A.8) gives:
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lim
l→∞

1

Vl

∫
�l

∫
�l

dxdx ′ e
−‖x−x′‖2(1/2nβ+1/2t)

(4π2tnβ)d/2

×
∫

�
nβ

(x′,x)

wnβ(dξ)e− ∫ nβ
0 dsvω(ξ(s))χ�l ,nβ(ξ)

∫
�t

(x,x′)
wt (dξ ′)χ�l,t (ξ

′)

= lim
l→∞

∫
Rd

dx
1

Vl

∫
�l

dx ′ e
−‖x−x′‖2(1/2nβ+1/2t)

(4π2tnβ)d/2

∫
�

nβ

(x′,x)

wnβ(dξ)e− ∫ nβ
0 dsvω(ξ(s)), (A.11)

which finishes the proof of (A.6). �

Appendix B: Some Probabilistic Estimates

First we recall the assumptions on the random potential vω used in [14], and which we also
adopt in this paper:

1. (a) On the probability space (�, F ,P) there exist a group of measure-preserving metri-
cally transitive transformations {Tp}p∈Rd of �, such that vω(x +p) = vTpω(x) for all
x,p ∈ R

d ;
(b) Eω{∫

�1
dx|vω(x)|κ} < ∞, where κ > max(2, d/2).

2. For any � ⊂ R
d , let �� be the σ -algebra generated by the random field vω(x), x ∈ �. For

any two arbitrary random variables on �, f , g satisfying (i) |g|∞ < ∞, Eω{|f |} < ∞ and
(ii) the function g is ��1 -measurable, the function f is ��2 -measurable, where �1,�2

are disjoint bounded subsets of R
d , the following holds

|E{|f.g|} − E{|f |}E{|g|}| ≤ |g|∞E{|f |}φ(d(�1,�2))

with φ(x) → 0 as x → ∞, and d(�1,�2) the Euclidean distance between �1 and �2.

After recalling these conditions, we can give a sketch of the proof of Lemma 5.1.
Let h

ω,N
l to be the Schrödinger operator (2.3), with Neumann boundary conditions in-

stead of Dirichlet, and denote by {Eω,l,N
i , φ

ω,l,N
i }i≥1 its ordered eigenvalues (including de-

generacy) and the corresponding eigenvectors. Similarly we define the kinetic energy op-
erator h

0,N
l with the same boundary condition, and denote by {εl,N

k ,ψ
l,N
k }k≥1 its ordered

eigenvalues (including degeneracy) and corresponding eigenvectors. The following result is
due to Thirring, see [28]:

Lemma B.1 Let vω
λ,α := vω + λα, for λ,α > 0. Then,

E
ω,l,N
1 ≥ −λα + min

{
ε

l,N
2 ,

[
1

Vl

∫
�l

dx(vω
λ,α(x))−1

]−1}
.

Proof Let P to be an orthogonal projection in Hl . Then for any vector φ from the intersec-
tion Q(vω

λ,α) ∩ Q((vω
λ,α)

1/2P (vω
λ,α)

1/2), we have:

(φ, vω
λ,αφ) = ((vω

λ,α)
1/2φ, (vω

λ,α)
1/2φ)

= ((vω
λ,α)

1/2φ,P (vω
λ,α)

1/2φ) + ((vω
λ,α)

1/2φ, (1 − P )(vω
λ,α)

1/2φ)

≥ ((vω
λ,α)

1/2φ,P (vω
λ,α)

1/2φ),
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and therefore,

−1

2
�N + vω

λ,α ≥ −1

2
�N + (vω

λ,α)
1/2P (vω

λ,α)
1/2, (B.1)

in the quadratic-form sense. Let us choose:

P := (vω
λ,α)

−1/2P̃
(
(ψ

l,N
1 , (vω

λ,α)
−1ψ

l,N
1 )

)−1
P̃ (vω

λ,α)
−1/2,

where P̃ is the orthogonal projection onto the subspace spanned by the vector ψ
l,N
1 . It can

be easily checked that P is an orthogonal projection. Applying (B.1) to the function φ
ω,l,N
1

one gets:

E
ω,l,N
1 + λα ≥

(
φ

ω,l,N
1 ,

(
−1

2
�N

)
φ

ω,l,N
1

)
+ |(φω,l,N

1 ,ψ
l,N
1 )|2(ψl,N

1 , (vω
λ,α)

−1ψ
l,N
1

)−1

≥
∑
k≥1

|(φω,l,N
1 ,ψ

l,N
k )|2εl,N

k + |(φω,l,N
1 ,ψ

l,N
1 )|2

[
1

Vl

∫
�l

dx(vω
λ,α(x))−1

]−1

.

But since the Neumann boundary conditions imply that ε
l,N
1 = 0, we obtain

E
ω,l,N
1 + λα ≥ (1 − |(φω,l,N

1 ,ψ
l,N
1 )|2)εl,N

2 + |(φω,l,N
1 ,ψ

l,N
1 )|2

[
1

Vl

∫
�l

dx(vω
λ,α(x))−1

]−1

.

To finish the proof, we have to study separately the two cases, namely, ε
l,N
2 less than and

greater than [ 1
Vl

∫
�l

dx(vω
λ,α(x))−1]−1. �

Proof of Lemma 5.1 By Lemma B.1,with λ = B/l2 and α as defined in assumptions, i.e. for
B = π/(1 + α), α > p/(1 − p), we have:

E
ω,l,N
1 ≥ −αB

l2
+ min(π/l2,1/Xl),

where

Xω
l := 1

Vl

∫
�l

dx
1

vω(x) + Bα/l2
.

Therefore,

E
ω,l,N
1 − B

l2
≥ −π

l2
+ min(π/l2,1/Xω

l ).

Hence, the inequality E
ω,l,N
1 < B/l2 implies that Xω

l > l2/π and consequently:

P(E
ω,l,N
1 < B/l2) ≤ P(Xω

l > l2/π). (B.2)

Define a random variable Y ω
l (δ) := Vl

−1
∫

�l
dx δ/(vω(x) + δ), which is an increasing func-

tion of δ. Then for the left-hand side of (B.2) one gets the estimate:

P(E
ω,l,N
1 < B/l2) ≤ P

(
Y ω

l (Bα/l2) >
α

1 + α

)
.
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By Lemma 2 in [14], we know that for any positive δ the random variables {Y ω
l (δ)}l , con-

verges geometrically to a limit Y∞(δ) as l → ∞, that is, for any ε > 0, there exists a constant
M(δ, ε) such that

P(|Y ω
l (δ) − Y∞(δ)| > ε/2) ≤ e−M(δ,ε)Vl

for l sufficiently large. By the ergodic theorem Y∞(δ) is non-random and can be expressed
as:

Y∞(δ) = Eω

(
δ

vω(0) + δ

)
,

which is again a monotonic function of δ ≥ 0. Notice that by condition (ii), Sect. 2, we have
limδ→0 Y∞(δ) = p.

Choose ε > 0 such that p + ε < α/(1 + α). Then we have

P

(
E

ω,l,N
1 <

B

l2

)
≤ P

(
Y ω

l (Bα/l2) > p + ε
)
.

Now we choose δ such that

Y∞(δ) − p < ε/2,

and let l0 be defined by δ = Bα/l2
0 . Then for any l > l0 we have:

P(E
ω,l,N
1 < B/l2) ≤ P

(
Y ω

l (Bα/l2) > p + ε
) ≤ P

(
Y ω

l (δ) − p > ε
)

≤ P
(|Y ω

l (δ) − Y∞(δ)| > ε/2
) ≤ e−M(δ,ε)Vl . �
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